If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-54=0
a = 1; b = 24; c = -54;
Δ = b2-4ac
Δ = 242-4·1·(-54)
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{22}}{2*1}=\frac{-24-6\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{22}}{2*1}=\frac{-24+6\sqrt{22}}{2} $
| 2x+6=4/5(6x-3) | | -1/4w-5=3/8 | | 4c+8c=–55+3c | | -1(-4y+10)=2*1 | | 24+x=12x-8 | | 2y+2+3y-11=180 | | 1.4x-1.77=-0.09 | | -1(-4y+10)=2 | | -0.9-7.2y=-8.7 | | 2(1/4x-7)=4+1/3x | | 5/x=(4/x)+10 | | (x-7)=21 | | (0.25)x-3=(0.375)x+4 | | 202=e-58.6 | | 2/3.4=x/9.2. | | w-275=489 | | (3w-28)=w | | (0.25)x+2=(-0.625)x-5 | | (5x-1)=9 | | P(20x=7) | | 14/x=(12/2x)+20 | | y-68=229y-68=229y-68=229 | | w=(3w-28) | | 36=-h/12 | | X=70+8x | | 20=3x+19 | | 2x+62=x+62 | | r+6.6=8.2 | | x+2x+3+4x-8=30 | | 3-2x=(-1.5)x | | 6=2v—4 | | (10-x)=3 |